书城自然科学不可不知的万物简史
12280700000019

第19章 完全改变了世界(1)

爱因斯坦1879年生于德国南部的乌尔姆,但在慕尼黑长大。他的早年生活几乎难以说明他将来会成为大人物。大家都知道,他到三岁才学会说话。19世纪90年代,他父亲的电器生意破产,举家迁往米兰,但这时候已经十来岁的阿尔伯特去了瑞士继续他的学业——虽然他一开始就没有通过大学入学考试。1896年,他放弃了德国籍,以免被征入伍,进入了苏黎世联邦工业大学,攻读旨在培养中学教师的四年制课程。他是一名聪明而又不突出的学生。

1900年,他从学校毕业,没过几个月就开始把论文投给《物理学年鉴》。他的第一篇论文论述(在那么多可写的东西中偏偏论述)吸管里流体的物理学,与普朗克的量子理论发表在同一期上。从1902年到1904年,他写出了一系列关于统计力学的论文,结果发现,多产的J.威拉德·吉布斯1901年在康涅狄格州已经悄悄地发表了同样的作品:《统计力学的基本原理》。

阿尔伯特曾爱上一位同学,一位名叫米勒娃·玛丽奇的匈牙利姑娘。1901年,他们没有结婚就生了个孩子,一个女儿。他们很谨慎,把孩子给了人家。爱因斯坦从没有见过自己的孩子。两年以后,他和玛丽奇结了婚。在此期间,爱因斯坦接受了瑞士专利局的一个职位,在那里待了随后的7年。他很喜欢这份工作:它很有挑战性,能使他的脑子忙个不停,但又不至于转移他对物理学的注意力。就是在这种背景下,他于1905年创立了狭义相对论。

《论动体的电动力学》,无论是在表达方式还是在内容上,都是发表过的最优秀的科学论文之一。它没有脚注,也没有引语,几乎不用数学,没有提及影响过该论文或在该论文之前的任何作品,只是对一个人的帮助致以谢意。他是专利局的一名同事,名叫米歇尔·贝索。C.P.斯诺写道,爱因斯坦好像“全凭思索,独自一人,没有听取别人的意见就得出了结论。在很大程度上,情况就是这样”。

他著名的等式E=mc2在这篇论文中没有出现,但出现在几个月以后的一篇短小的补充里。你可以回忆一下学校里学过的东西,等式中的E代表能量,m代表质量,c2代表光速的平方。

用最简单的话来说,这个等式的意思是:质量和能量是等价的。它们是同一东西的两种形式:能量是获释的质量;质量是等待获释的能量。由于c2(光速的平方)是个大得不得了的数字,这个等式意味着,每个物体里都包含着极其大量——真正极其大量——的能量。

你或许觉得自己不大健壮,但是,如果你是个普通个子的成人,你那不起眼的躯体里包含着不少于7×1018焦耳的潜能——爆炸的威力足足抵得上30颗氢弹,要是你知道怎么释放它,而且确实愿意这么做的话。每种物体内部都蕴藏着这样的能量。我们只是不大善于把它释放出来而已。连一颗铀弹——我们迄今为止制造出的能量最大的家伙——释放出的能量还不足它可以释放出的能量的1%,要是我们更聪明点的话。

其中,爱因斯坦的理论解释了放射作用是怎么发生的:一块铀怎么源源不断地释放出强辐射能量,而又不像冰块那样融化。(只要把质量极其有效地转变为能量,这是办得到的:E=mc2。)该理论解释了恒星为什么可以燃烧几十亿年而又不把燃料用尽。(同上。)爱因斯坦用一个简单的公式,一下子使地质学家和天文学家的视界开阔了几十亿年。该理论尤其表明,光速是不变的,最快的,什么速度也超不过它。因此,这使我们一下子弄清了宇宙性质的核心。而且,该理论还解决了光以太的问题,说明它并不存在。爱因斯坦的宇宙不需要以太。

物理学家一般不大重视瑞士专利局职员发表的东西,因此尽管提供的信息又多又有用,爱因斯坦的论文并没有引起多少注意。由于刚刚解开宇宙中几个最难解开的谜团,爱因斯坦申请大学讲师的职位,但是遭到拒绝,接着又申请中学教师的职位,再次遭到拒绝。于是,他重新干起三级审查员的活儿——不过,他当然没有停止思索。他离大功告成还远着呢。

有一次,诗人保罗·瓦莱里问爱因斯坦,他是不是随身带着个笔记本记录自己的思想,爱因斯坦稍稍而又着实吃惊地看了他一眼。“哦,那是没有必要的,”他回答说,“我极少带个笔记本。”我无须指出,要是他真的带个本子的话,倒是很有好处的。爱因斯坦的下一个点子,是一切点子中最伟大的点子——布尔斯、莫茨和韦弗在他们很有创见的原子科学史中说,这确实是最最伟大的点子。“作为一个脑子的独创,”他们写道,“这无疑是人类最高的智力成就。”这个评价当然很高。

1907年,反正有时候书上是这么写的,有个工人从房顶上掉了下来,爱因斯坦就开始考虑引力的问题。天哪,像许多动人的故事一样,这个故事的真实性似乎存在问题。据爱因斯坦自己说,他想到引力问题的时候,当时只是坐在椅子上。

实际上,爱因斯坦想到的更像是开始为引力问题找个答案。他从一开头就清楚地认识到,狭义相对论里缺少一样东西,那就是引力。狭义相对论之所以“狭义”,是因为它研究的完全是在无障碍的状态下运动的东西。但是,要是一个运动中的东西——尤其是光——遇到了比如引力这样的障碍会怎么样?在此后10年的大部分时间里,他一直在思索这个问题,最后于1917年初发表了题为《关于广义相对论的宇宙学思考》的论文。当然,1905年的狭义相对论是一项深刻而又重要的成就。但是,正如C.P.斯诺有一次指出的,要是爱因斯坦没有想到,别人也会想到,很可能在5年之内。这是一件在等着要发生的事。但是,那个广义相对论完全是另一回事。“没有它,”斯诺在1979年写道,“我们今天有可能还在等待那个理论。”

爱因斯坦常手拿烟斗,和蔼可亲,不爱露面,一头乱发,真是个非凡人物。这样的人物不可能永远默默无闻。1919年,战争结束了,世界突然发现了他。几乎同时,他的相对论以普通人无法搞懂出了名。《纽约时报》决定写一篇报道——由于永远令人想不通的原因——派了该报一个名叫亨利·克劳奇的高尔夫运动记者去负责这次采访,结果正如戴维·博丹尼斯在他出色的《E=mc2》一书中指出的,根本不解决问题。

这次采访令克劳奇力不从心,他差不多把什么都搞错了。他的报道里有许多令人难忘的错误,其中之一,他断言,爱因斯坦找了个胆子很大的出版商,敢于出版一本全世界只有12个人看得懂的书。当然,根本不存在这样的书,根本不存在这样的出版商,也根本不存在这么狭小的学术界,但这种看法已深入了人心。过不多久,在人们的想像中,搞得懂相对论的人数又少了许多——应当指出,科学界对这种神话没有去加以澄清。

有一位记者问英国天文学家阿瑟·爱丁顿,他是不是真的就是世界上仅有的三个能理解爱因斯坦的相对论的人之一。爱丁顿认真地想了片刻,然后回答说:“我正在想谁是第三个人呢。”实际上,相对论的问题并不在于它涉及许多微分方程、洛伦兹变换和其他复杂的数学(虽然它确实涉及——有的方面连爱因斯坦也需要别人帮忙),而是在于它不是凭直觉所能完全搞懂的。

实质上,相对论的内容是:空间和时间不是绝对的,而是既相对于观察者,又相对于被观察者;一个人移动得越快,这种效果就越明显。我们永远也无法将自己加速到光的速度;相对于旁观者而言,我们越是努力(因此我们走得越快),我们的模样就越会失真。

几乎同时,从事科学普及的人想要设法使广大群众弄懂这些概念。数学家和哲学家罗素写的《相对论ABC》就是一次比较成功的尝试——至少在商业上可以这么说。罗素在这本书里使用了至今已经多次使用过的比喻。他让读者想像一列90米长的火车在以光速的60%行驶。对于立在站台上望着它驶过的人来说,那列火车看上去会只有70余米长,车上的一切都会同样缩小。要是我们听得见车上的人在说话,他们的声音听上去会含糊不清,十分缓慢,犹如唱片放得太慢,他们的行动看上去也会变得很笨拙。连车上的钟也会似乎只在以平常速度的五分之四走动。

然而——问题就在这里——车上的人并不觉得自己变了形。在他们看来,车上的一切似乎都很正常。倒是立在站台上的我们古怪地变小了,动作变慢了。你看,这一切都和你与移动物体的相对位置有关系。

实际上,你每次移动都会产生这样的效果。乘飞机越过美国,你会用大约一百亿亿分之一秒踏出飞机,比在你后面离开飞机的人要年轻一些。即使从屋子的这头走到那头的时候,你自己所经历的时间和空间也会稍有改变。据计算,一个以每小时160公里的速度抛出去的棒球,在抵达本垒板的过程中会获得0.000000000002克物质。因此,相对论的作用是具体的,可以测定的。问题在于,这种变化太小,我们毫无察觉。但是,对于宇宙中别的东西来说——光、引力、宇宙本身——这些就都是举足轻重的大事了。

因此,如果说相对论的概念好像有点儿怪,那只是因为我们在正常的生活中没有经历这类相互作用。不过,又不得不求助于博尼丹斯,我们大家都经常遇到其他种类的相对论——比如声音。要是你在公园里,有人在演奏难听的音乐,你知道,要是你走得远一点,音乐好像就会轻一点。当然,那并不是因为音乐真的轻了点,而只是因为你对于音乐的位置发生了变化。对于体积很小的或行动缓慢的,因此无法有同样经历的东西来说——比如蜗牛——也许难以置信,一个喇叭似乎同时能对两个听众放出两种音量的音乐。

在“广义相对论”的众多概念中,最具挑战性的,最直觉不到的,在于时间是空间的组成部分这个概念。我们本能地把时间看做是永恒的,绝对的,不可改变的,相信什么也干扰不了它的坚定步伐。事实上,爱因斯坦认为,时间是可以更改的,不断变化的。时间甚至还有形状。一份时间与三份空间结合在一起——用斯蒂芬·霍金的话来说是“无法解脱地交织在一起”——不可思议地形成一份“时空”。

通常,时空是这样解释的:请你想像一样平坦而又柔韧的东西——比如一块地毯或一块伸直的橡皮垫子——上面放个又重又圆的物体,比如铁球。铁球的重量使得下面的底垫稍稍伸展和下陷。这大致类似于太阳这样的庞然大物(铁球)对于时空(底垫)的作用:铁球使底垫伸展、弯曲、翘起。现在,要是你让一个较小的球从底垫上滚过去,它试图做直线运动,就像牛顿运动定律要求的那样。然而,当它接近大球以及底垫下陷部分的时候,它就滚向低处,不可避免地被大球吸了过去。这就是引力——时空弯曲的一种产物。

凡有质量的物体在宇宙的底垫上都能造成一个小小的凹坑。因此,正如丹尼斯·奥弗比说的,宇宙是个“最终的下陷底垫”。从这个观点来看,引力与其说是一种东西,不如说是一种结果——用物理学家米奇奥·卡库的话来说:“不是一种‘力’,而是时空弯曲的一件副产品。”卡库接着又说:“在某种意义上,引力并不存在;使行星和恒星运动的是空间和时间的变形。”

当然,以下陷的底垫来作比喻,只能帮助我们理解到这种程度,因为没有包含时间的作用。话虽这么说,其实我们的大脑也只能想像到这个地步。若要想像空间和时间以3:1的比例像线织成一块格子地垫那样织成一份时空,这几乎是不可能的。无论如何,我想我们会一致认为,对于一位凝视着瑞士首都专利局窗外的年轻人来说,这确实是个了不起的见解。