书城科普读物必学的数学智力
29515600000090

第90章 总经理的怪题

7.11是美国的一个连锁店的名字,该连锁店经营食品和一些日常用品。一天,该店的总经理出了一道题,他问:“有一个顾客,买了四样小商品,这四样商品价格加起来恰是7.11美元,而这四样商品的价格的乘积也恰是7.11美元,请问,这四样商品的价格分别是多少?”

[答案:根据原题可以写出这样一个不定方程:

A B C D=7.11

A×B×C×D=7.11

该不定方程有两个方程式组成,有四个未知数,用一般解方程方法是无法得到未知数的解的(这也是为什么这种方程被称为不定方程)。解不定方程,需要用题目中给与的或明确或隐含的条件来辅助解决。

人们不习惯于小数的运算,因此,可以把该方程转化为整数:

A B C D=711

A×B×C×D=711000000

首先,要从这711000000着手,711000000等于79×5×5×5×5×5×5×3×3×2×2×2×2×2×2,ABCD必定分别是它们某几个之间相互的乘积。这里隐含的已知条件是:ABCD,均是正整数,在数值在1到711间(确切地说,ABCD每个数都不小于1,不大于708)。

注意上述的分解出的乘数中,比较突出的数字是79,它只出现一次,且最大,是破案中最明显的目标。在ABCD中,其中一个必含有79(是79的倍数)。因为上面我们说过,ABCD任何一个数,包括该含有79的数不能大于711,那么该含79的数字小于711的可能的值有6个,从大到小分别是79×3×2=474,79×5=395,79×2×2=316,79×3=237,79×2=158,及79本身。看,我们一下就把侦破的范围缩小到六个数中,该问题的答案中的含有79的那个数,就在这六个数之中。

让我们分别来看,看这六个可能的数,是否可以满足作为方程的解的要求。

第一个,看看474.711000000除掉474(79×3×2)后,剩下的数是5×5×5×5×5×5×3×2×2×2×2×2,这些数字要组合成三个数,这三个数的和要等于711-474=217.我们知道,由乘数分别组合来的几个数,在它们数字最接近时,其和最小。例如,2×2×2×2×2×2组合成两个数字时,只有在组合成2×2×2和2×2×2时,它们的和最小,为16,其它的任何组合成两数的和,都大于16(例如,2×2×2×2 2×2=20)。我们可以看到,5×5×5×5×5×5×3×2×2×2×2×2能组合成的和为最小的三个数(最为接近的三个数)是100,120,125,而它们的和是345,大于所要满足的217.因此,无论它们如何组成三个数,都只可能大于217,而不可能满足等于217的作案条件/解题条件,那么问题出在哪里呢?问题出在,79×3×2=474不可能是该题的解,即474不是ABCD中的任何一个,因为如果ABCD其中一个是474,其它数无论如何组和,都不可能满足那两个方程式。这样,我们可以排除474.

第二个,看看395(79×5)。用同样的分析,我们可以看到,711000000除去395后,所余下的数,能组成的和为最小的三个数是120,120,125,其和为365,大于所要的711-395=316.同样道理,395也可以排除在嫌疑之外。

第三个,看看316(79×2×2),当然还用同样的分析方法。哈,这次猜猜会有什么样的结果呢?呵呵,这次我们的运气实在是好,阳台上花盆不小心掉下去,正砸在楼下撬窗准备入室行窃的小偷脑袋上。711000000除去316后,余下的数组合成的和为最小的三个数为120,125,150,而120 125 150=395恰等于711-316.结果,在排除疑犯时,一不小心,歪打正着,我们抓住了正在作案的家伙,316,120,125,150恰是满足原题条件的一组解。而且,在一个数是316的情况下,除了120,125,150外,其它组合成的三个数都要大于395,因而,在一个数是316的情况下,只有这一组解。

抓住一组案犯,但是否还有其它案犯存在呢?换成数学语言是,这组解是否是唯一解呢?

六个可能的含有79的值,我们分析了三个,还剩下三个。这剩下的三个数,我们也要排查一下。

第四个,看看237(79×3)。这次,用上面的方法就不灵了,因为在下面这三个数字,被711000000除后的数值,组成三个数的最小和,可以小于711减该数的差值。这次,我们用新方法。如果四个数字中,一个是237,那么余下的三个数值之和应该是711-237=474.我们再看看711000000除以237后,得到5×5×5×5×5×5×3×2×2×2×2×2×2,注意其中的六个5.如果这三个数值都含有5,那么其和必定也可以被5整除。但474是不能被5整除的,说明至少一个数值之中不含有5.是否可能只有一个数值中含有5呢?我们看六个5相乘等于15625,远大于所要求的三个数值之和474,所以这六个5不可能完全在一个数值中。同样,一个数值中也不可能有五个5相乘(得3125),也不可能有四个5相乘(得625)。所以,可能的情况只有,在含有5的两个数值中,一个数值中有三个5,而另一个数值中也有三个5.这样,这两个数字只可能是125或125×2(不可能是125×3,因为125×3 125大于474)。于是,我们只有两组可能的值,一个是125,125,192,另一组是125,250,96.这两组值,其和都不是474,它们都不是我们的题解。排除!

第五个,看看158(79×2)。158也不能被5整除,所以我们仍然可以用上面的方法。过程就不罗嗦了,得到可能的四组值分别是125,125,288;125,250,144;250,250,72;125,375,96.同样,没有一组的和等于711-158,所以,158也是清白的。

第六个,也是最后一个,看看79.79也不能被5整除,我们可以依样画葫芦,略去过程,得到六组值,分别是:125,125,576;125,250,288;250,250,144;125,500,144;125,375,192;250,375,96.我们高兴地看到,它们也都不满足要求(三者之和要等于711-79),所以,79也是清白的。

回首看看,在六个可能的含79的值中,只有316是满足条件的,且发现了一组解,316,120,125,150,且是唯一的一组解。

不要忘了,为了计算方便,我们去掉了小数点,我们还要把小数点加回去。

最终答案:这四种商品的价格分别是:3.16美元,1.20美元,1.25美元,和1.50美元。]