书城公版Darwin and Modern Science
34905600000044

第44章

From the same chapter I may here cite the following paragraph: "Thus as Iam inclined to believe, morphological differences,...such as the arrangement of the leaves, the divisions of the flower or of the ovarium, the position of the ovules, etc.--first appeared in many cases as fluctuating variations, which sooner or later became constant through the nature of the organism and of the surrounding conditions...but NOT THROUGHNATURAL SELECTION (The italics are mine (H. de V.).); for as these morphological characters do not affect the welfare of the species, any slight deviation in them could not have been governed or accumulated through this latter agency." ("Origin of Species" (6th edition), page 176.) We thus see that in Darwin's opinion, all small variations had not the same importance. In favourable circumstances some could become constant, but others could not.

Since the appearance of the first edition of "The Origin of Species"fluctuating variability has been thoroughly studied by Quetelet. He discovered the law, which governs all phenomena of organic life falling under this head. It is a very ****** law, and states that individual variations follow the laws of probability. He proved it, in the first place, for the size of the human body, using the measurements published for Belgian recruits; he then extended it to various other measurements of parts of the body, and finally concluded that it must be of universal validity for all organic beings. It must hold true for all characters in man, physical as well as intellectual and moral qualities; it must hold true for the plant kingdom as well as for the animal kingdom; in short, it must include the whole living world.

Quetelet's law may be most easily studied in those cases where the variability relates to measure, number and weight, and a vast number of facts have since confirmed its exactness and its validity for all kinds of organisms, organs and qualities. But if we examine it more closely, we find that it includes just those minute variations, which, as Darwin repeatedly pointed out, have often no significance for the origin of species. In the phenomena, described by Quetelet's law nothing "happens to arise"; all is governed by the common law, which states that small deviations from the mean type are frequent, but that larger aberrations are rare, the rarer as they are larger. Any degree of variation will be found to occur, if only the number of individuals studied is large enough: it is even possible to calculate before hand, how many specimens must be compared in order to find a previously fixed degree of deviation.

The variations, which from time to time happen to appear, are evidently not governed by this law. They cannot, as yet, be produced at will: no sowings of thousands or even of millions of plants will induce them, although by such means the chance of their occurring will obviously be increased. But they are known to occur, and to occur suddenly and abruptly. They have been observed especially in horticulture, where they are ranged in the large and ill-defined group called sports. Korschinsky has collected all the evidence which horticultural literature affords on this point. (S. Korschinsky, "Heterogenesis und Evolution", "Flora", Vol.

LXXXIX. pages 240-363, 1901.) Several cases of the first appearance of a horticultural novelty have been recorded: this has always happened in the same way; it appeared suddenly and unexpectedly without any definite relation to previously existing variability. Dwarf types are one of the commonest and most favourite varieties of flowering plants; they are not originated by a repeated selection of the smallest specimens, but appear at once, without intermediates and without any previous indication. In many instances they are only about half the height of the original type, thus constituting obvious novelties. So it is in other cases described by Korschinsky: these sports or mutations are now recognised to be the main source of varieties of horticultural plants.

As already stated, I do not pretend that the production of horticultural novelties is the prototype of the origin of new species in nature. Iassume that they are, as a rule, derived from the parent species by the loss of some organ or quality, whereas the main lines of the evolution of the animal and vegetable kingdom are of course determined by progressive changes. Darwin himself has often pointed out this difference. But the saltatory origin of horticultural novelties is as yet the ******st parallel for natural mutations, since it relates to forms and phenomena, best known to the general student of evolution.

The point which I wish to insist upon is this. The difference between small and ever present fluctuations and rare and more sudden variations was clear to Darwin, although the facts known at his time were too meagre to enable a sharp line to be drawn between these two great classes of variability. Since Darwin's time evidence, which proves the correctness of his view, has accumulated with increasing rapidity. Fluctuations constitute one type; they are never absent and follow the law of chance, but they do not afford the material from which to build new species.

Mutations, on the other hand, only happen to occur from time to time. They do not necessarily produce greater changes than fluctuations, but such as may become, or rather are from their very nature, constant. It is this constancy which is the mark of specific characters, and on this basis every new specific character may be assumed to have arisen by mutation.